

 Navigation

 	
 index

 	
 next |

 	Guzzle 6

Guzzle Documentation

Guzzle is a PHP HTTP client that makes it easy to send HTTP requests and
trivial to integrate with web services.

	Simple interface for building query strings, POST requests, streaming large
uploads, streaming large downloads, using HTTP cookies, uploading JSON data,
etc...

	Can send both synchronous and asynchronous requests using the same interface.

	Uses PSR-7 interfaces for requests, responses, and streams. This allows you
to utilize other PSR-7 compatible libraries with Guzzle.

	Abstracts away the underlying HTTP transport, allowing you to write
environment and transport agnostic code; i.e., no hard dependency on cURL,
PHP streams, sockets, or non-blocking event loops.

	Middleware system allows you to augment and compose client behavior.

$client = new GuzzleHttp\Client();
$res = $client->request('GET', 'https://api.github.com/user', [
 'auth' => ['user', 'pass']
]);
echo $res->getStatusCode();
// "200"
echo $res->getHeader('content-type')[0];
// 'application/json; charset=utf8'
echo $res->getBody();
// {"type":"User"...'

// Send an asynchronous request.
$request = new \GuzzleHttp\Psr7\Request('GET', 'http://httpbin.org');
$promise = $client->sendAsync($request)->then(function ($response) {
 echo 'I completed! ' . $response->getBody();
});
$promise->wait();

User Guide

	Overview
	Requirements

	Installation
	Bleeding edge

	License

	Contributing
	Guidelines

	Running the tests

	Reporting a security vulnerability

	Quickstart
	Making a Request
	Creating a Client

	Sending Requests

	Async Requests

	Concurrent requests

	Using Responses

	Query String Parameters

	Uploading Data
	POST/Form Requests

	Cookies

	Redirects

	Exceptions

	Environment Variables
	Relevant ini Settings

	Request Options
	allow_redirects

	auth

	body

	cert

	cookies

	connect_timeout

	debug

	decode_content

	delay

	expect

	force_ip_resolve

	form_params

	headers

	http_errors

	idn_conversion

	json

	multipart

	on_headers

	on_stats

	progress

	proxy

	query

	read_timeout

	sink

	ssl_key

	stream

	synchronous

	verify

	timeout

	version

	Guzzle and PSR-7
	Headers
	Accessing Headers

	Complex Headers

	Body

	Requests
	Request Methods

	Request URI

	Scheme

	Host

	Port

	Path

	Query string

	Responses
	Start-Line

	Body

	Streams
	Creating Streams

	Metadata

	Stream Decorators

	Handlers and Middleware
	Handlers

	Middleware

	HandlerStack

	Creating a Handler

	Testing Guzzle Clients
	Mock Handler

	History Middleware

	Test Web Server
	Using the test server

	FAQ
	Does Guzzle require cURL?

	Can Guzzle send asynchronous requests?

	How can I add custom cURL options?

	How can I add custom stream context options?

	Why am I getting an SSL verification error?

	What is this Maximum function nesting error?

	Why am I getting a 417 error response?

	How can I track redirected requests?

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle 6

Overview

Requirements

	PHP 5.5.0

	To use the PHP stream handler, allow_url_fopen must be enabled in your
system's php.ini.

	To use the cURL handler, you must have a recent version of cURL >= 7.19.4
compiled with OpenSSL and zlib.

Note

Guzzle no longer requires cURL in order to send HTTP requests. Guzzle will
use the PHP stream wrapper to send HTTP requests if cURL is not installed.
Alternatively, you can provide your own HTTP handler used to send requests.
Keep in mind that cURL is still required for sending concurrent requests.

Installation

The recommended way to install Guzzle is with
Composer [https://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and
installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

You can add Guzzle as a dependency using Composer:

composer require guzzlehttp/guzzle:^7.0

Alternatively, you can specify Guzzle as a dependency in your project's
existing composer.json file:

 {
 "require": {
 "guzzlehttp/guzzle": "^7.0"
 }
}

After installing, you need to require Composer's autoloader:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and
other best-practices for defining dependencies at getcomposer.org [https://getcomposer.org].

Bleeding edge

During your development, you can keep up with the latest changes on the master
branch by setting the version requirement for Guzzle to ^7.0@dev.

{
 "require": {
 "guzzlehttp/guzzle": "^7.0@dev"
 }
}

License

Licensed using the MIT license [https://opensource.org/licenses/MIT].

Copyright (c) 2015 Michael Dowling <https://github.com/mtdowling>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Contributing

Guidelines

	Guzzle utilizes PSR-1, PSR-2, PSR-4, and PSR-7.

	Guzzle is meant to be lean and fast with very few dependencies. This means
that not every feature request will be accepted.

	Guzzle has a minimum PHP version requirement of PHP 7.2. Pull requests must
not require a PHP version greater than PHP 7.2 unless the feature is only
utilized conditionally and the file can be parsed by PHP 7.2.

	All pull requests must include unit tests to ensure the change works as
expected and to prevent regressions.

Running the tests

In order to contribute, you'll need to checkout the source from GitHub and
install Guzzle's dependencies using Composer:

git clone https://github.com/guzzle/guzzle.git
cd guzzle && composer install

Guzzle is unit tested with PHPUnit. Run the tests using the Makefile:

make test

Note

You'll need to install node.js v8 or newer in order to perform integration
tests on Guzzle's HTTP handlers.

Reporting a security vulnerability

We want to ensure that Guzzle is a secure HTTP client library for everyone. If
you've discovered a security vulnerability in Guzzle, we appreciate your help
in disclosing it to us in a responsible manner [https://en.wikipedia.org/wiki/Responsible_disclosure].

Publicly disclosing a vulnerability can put the entire community at risk. If
you've discovered a security concern, please email us at
security@guzzlephp.org. We'll work with you to make sure that we understand the
scope of the issue, and that we fully address your concern. We consider
correspondence sent to security@guzzlephp.org our highest priority, and work to
address any issues that arise as quickly as possible.

After a security vulnerability has been corrected, a security hotfix release will
be deployed as soon as possible.

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle 6

Quickstart

This page provides a quick introduction to Guzzle and introductory examples.
If you have not already installed, Guzzle, head over to the Installation
page.

Making a Request

You can send requests with Guzzle using a GuzzleHttp\ClientInterface
object.

Creating a Client

use GuzzleHttp\Client;

$client = new Client([
 // Base URI is used with relative requests
 'base_uri' => 'http://httpbin.org',
 // You can set any number of default request options.
 'timeout' => 2.0,
]);

Clients are immutable in Guzzle 6, which means that you cannot change the defaults used by a client after it's created.

The client constructor accepts an associative array of options:

	base_uri

	(string|UriInterface) Base URI of the client that is merged into relative
URIs. Can be a string or instance of UriInterface. When a relative URI
is provided to a client, the client will combine the base URI with the
relative URI using the rules described in
RFC 3986, section 5.2 [https://tools.ietf.org/html/rfc3986#section-5.2].

// Create a client with a base URI
$client = new GuzzleHttp\Client(['base_uri' => 'https://foo.com/api/']);
// Send a request to https://foo.com/api/test
$response = $client->request('GET', 'test');
// Send a request to https://foo.com/root
$response = $client->request('GET', '/root');

Don't feel like reading RFC 3986? Here are some quick examples on how a
base_uri is resolved with another URI.

	base_uri
	URI
	Result

	http://foo.com
	/bar
	http://foo.com/bar

	http://foo.com/foo
	/bar
	http://foo.com/bar

	http://foo.com/foo
	bar
	http://foo.com/bar

	http://foo.com/foo/
	bar
	http://foo.com/foo/bar

	http://foo.com
	http://baz.com
	http://baz.com

	http://foo.com/?bar
	bar
	http://foo.com/bar

	handler

	(callable) Function that transfers HTTP requests over the wire. The
function is called with a Psr7\Http\Message\RequestInterface and array
of transfer options, and must return a
GuzzleHttp\Promise\PromiseInterface that is fulfilled with a
Psr7\Http\Message\ResponseInterface on success.

	...

	(mixed) All other options passed to the constructor are used as default
request options with every request created by the client.

Sending Requests

Magic methods on the client make it easy to send synchronous requests:

$response = $client->get('http://httpbin.org/get');
$response = $client->delete('http://httpbin.org/delete');
$response = $client->head('http://httpbin.org/get');
$response = $client->options('http://httpbin.org/get');
$response = $client->patch('http://httpbin.org/patch');
$response = $client->post('http://httpbin.org/post');
$response = $client->put('http://httpbin.org/put');

You can create a request and then send the request with the client when you're
ready:

use GuzzleHttp\Psr7\Request;

$request = new Request('PUT', 'http://httpbin.org/put');
$response = $client->send($request, ['timeout' => 2]);

Client objects provide a great deal of flexibility in how request are
transferred including default request options, default handler stack middleware
that are used by each request, and a base URI that allows you to send requests
with relative URIs.

You can find out more about client middleware in the
Handlers and Middleware page of the documentation.

Async Requests

You can send asynchronous requests using the magic methods provided by a client:

$promise = $client->getAsync('http://httpbin.org/get');
$promise = $client->deleteAsync('http://httpbin.org/delete');
$promise = $client->headAsync('http://httpbin.org/get');
$promise = $client->optionsAsync('http://httpbin.org/get');
$promise = $client->patchAsync('http://httpbin.org/patch');
$promise = $client->postAsync('http://httpbin.org/post');
$promise = $client->putAsync('http://httpbin.org/put');

You can also use the sendAsync() and requestAsync() methods of a client:

use GuzzleHttp\Psr7\Request;

// Create a PSR-7 request object to send
$headers = ['X-Foo' => 'Bar'];
$body = 'Hello!';
$request = new Request('HEAD', 'http://httpbin.org/head', $headers, $body);
$promise = $client->sendAsync($request);

// Or, if you don't need to pass in a request instance:
$promise = $client->requestAsync('GET', 'http://httpbin.org/get');

The promise returned by these methods implements the
Promises/A+ spec [https://promisesaplus.com/], provided by the
Guzzle promises library [https://github.com/guzzle/promises]. This means
that you can chain then() calls off of the promise. These then calls are
either fulfilled with a successful Psr\Http\Message\ResponseInterface or
rejected with an exception.

use Psr\Http\Message\ResponseInterface;
use GuzzleHttp\Exception\RequestException;

$promise = $client->requestAsync('GET', 'http://httpbin.org/get');
$promise->then(
 function (ResponseInterface $res) {
 echo $res->getStatusCode() . "\n";
 },
 function (RequestException $e) {
 echo $e->getMessage() . "\n";
 echo $e->getRequest()->getMethod();
 }
);

Concurrent requests

You can send multiple requests concurrently using promises and asynchronous
requests.

use GuzzleHttp\Client;
use GuzzleHttp\Promise;

$client = new Client(['base_uri' => 'http://httpbin.org/']);

// Initiate each request but do not block
$promises = [
 'image' => $client->getAsync('/image'),
 'png' => $client->getAsync('/image/png'),
 'jpeg' => $client->getAsync('/image/jpeg'),
 'webp' => $client->getAsync('/image/webp')
];

// Wait for the requests to complete; throws a ConnectException
// if any of the requests fail
$responses = Promise\unwrap($promises);

// You can access each response using the key of the promise
echo $responses['image']->getHeader('Content-Length')[0];
echo $responses['png']->getHeader('Content-Length')[0];

// Wait for the requests to complete, even if some of them fail
$responses = Promise\settle($promises)->wait();

// Values returned above are wrapped in an array with 2 keys: "state" (either fulfilled or rejected) and "value" (contains the response)
echo $responses['image']['state']; // returns "fulfilled"
echo $responses['image']['value']->getHeader('Content-Length')[0];
echo $responses['png']['value']->getHeader('Content-Length')[0];

You can use the GuzzleHttp\Pool object when you have an indeterminate
amount of requests you wish to send.

use GuzzleHttp\Client;
use GuzzleHttp\Exception\RequestException;
use GuzzleHttp\Pool;
use GuzzleHttp\Psr7\Request;
use GuzzleHttp\Psr7\Response;

$client = new Client();

$requests = function ($total) {
 $uri = 'http://127.0.0.1:8126/guzzle-server/perf';
 for ($i = 0; $i < $total; $i++) {
 yield new Request('GET', $uri);
 }
};

$pool = new Pool($client, $requests(100), [
 'concurrency' => 5,
 'fulfilled' => function (Response $response, $index) {
 // this is delivered each successful response
 },
 'rejected' => function (RequestException $reason, $index) {
 // this is delivered each failed request
 },
]);

// Initiate the transfers and create a promise
$promise = $pool->promise();

// Force the pool of requests to complete.
$promise->wait();

Or using a closure that will return a promise once the pool calls the closure.

$client = new Client();

$requests = function ($total) use ($client) {
 $uri = 'http://127.0.0.1:8126/guzzle-server/perf';
 for ($i = 0; $i < $total; $i++) {
 yield function() use ($client, $uri) {
 return $client->getAsync($uri);
 };
 }
};

$pool = new Pool($client, $requests(100));

Using Responses

In the previous examples, we retrieved a $response variable or we were
delivered a response from a promise. The response object implements a PSR-7
response, Psr\Http\Message\ResponseInterface, and contains lots of
helpful information.

You can get the status code and reason phrase of the response:

$code = $response->getStatusCode(); // 200
$reason = $response->getReasonPhrase(); // OK

You can retrieve headers from the response:

// Check if a header exists.
if ($response->hasHeader('Content-Length')) {
 echo "It exists";
}

// Get a header from the response.
echo $response->getHeader('Content-Length')[0];

// Get all of the response headers.
foreach ($response->getHeaders() as $name => $values) {
 echo $name . ': ' . implode(', ', $values) . "\r\n";
}

The body of a response can be retrieved using the getBody method. The body
can be used as a string, cast to a string, or used as a stream like object.

$body = $response->getBody();
// Implicitly cast the body to a string and echo it
echo $body;
// Explicitly cast the body to a string
$stringBody = (string) $body;
// Read 10 bytes from the body
$tenBytes = $body->read(10);
// Read the remaining contents of the body as a string
$remainingBytes = $body->getContents();

Query String Parameters

You can provide query string parameters with a request in several ways.

You can set query string parameters in the request's URI:

$response = $client->request('GET', 'http://httpbin.org?foo=bar');

You can specify the query string parameters using the query request
option as an array.

$client->request('GET', 'http://httpbin.org', [
 'query' => ['foo' => 'bar']
]);

Providing the option as an array will use PHP's http_build_query function
to format the query string.

And finally, you can provide the query request option as a string.

$client->request('GET', 'http://httpbin.org', ['query' => 'foo=bar']);

Uploading Data

Guzzle provides several methods for uploading data.

You can send requests that contain a stream of data by passing a string,
resource returned from fopen, or an instance of a
Psr\Http\Message\StreamInterface to the body request option.

// Provide the body as a string.
$r = $client->request('POST', 'http://httpbin.org/post', [
 'body' => 'raw data'
]);

// Provide an fopen resource.
$body = fopen('/path/to/file', 'r');
$r = $client->request('POST', 'http://httpbin.org/post', ['body' => $body]);

// Use the stream_for() function to create a PSR-7 stream.
$body = \GuzzleHttp\Psr7\stream_for('hello!');
$r = $client->request('POST', 'http://httpbin.org/post', ['body' => $body]);

An easy way to upload JSON data and set the appropriate header is using the
json request option:

$r = $client->request('PUT', 'http://httpbin.org/put', [
 'json' => ['foo' => 'bar']
]);

POST/Form Requests

In addition to specifying the raw data of a request using the body request
option, Guzzle provides helpful abstractions over sending POST data.

Sending form fields

Sending application/x-www-form-urlencoded POST requests requires that you
specify the POST fields as an array in the form_params request options.

$response = $client->request('POST', 'http://httpbin.org/post', [
 'form_params' => [
 'field_name' => 'abc',
 'other_field' => '123',
 'nested_field' => [
 'nested' => 'hello'
]
]
]);

Sending form files

You can send files along with a form (multipart/form-data POST requests),
using the multipart request option. multipart accepts an array of
associative arrays, where each associative array contains the following keys:

	name: (required, string) key mapping to the form field name.

	contents: (required, mixed) Provide a string to send the contents of the
file as a string, provide an fopen resource to stream the contents from a
PHP stream, or provide a Psr\Http\Message\StreamInterface to stream
the contents from a PSR-7 stream.

$response = $client->request('POST', 'http://httpbin.org/post', [
 'multipart' => [
 [
 'name' => 'field_name',
 'contents' => 'abc'
],
 [
 'name' => 'file_name',
 'contents' => fopen('/path/to/file', 'r')
],
 [
 'name' => 'other_file',
 'contents' => 'hello',
 'filename' => 'filename.txt',
 'headers' => [
 'X-Foo' => 'this is an extra header to include'
]
]
]
]);

Cookies

Guzzle can maintain a cookie session for you if instructed using the
cookies request option. When sending a request, the cookies option
must be set to an instance of GuzzleHttp\Cookie\CookieJarInterface.

// Use a specific cookie jar
$jar = new \GuzzleHttp\Cookie\CookieJar;
$r = $client->request('GET', 'http://httpbin.org/cookies', [
 'cookies' => $jar
]);

You can set cookies to true in a client constructor if you would like
to use a shared cookie jar for all requests.

// Use a shared client cookie jar
$client = new \GuzzleHttp\Client(['cookies' => true]);
$r = $client->request('GET', 'http://httpbin.org/cookies');

Different implementations exist for the GuzzleHttp\Cookie\CookieJarInterface
:

	The GuzzleHttp\Cookie\CookieJar class stores cookies as an array.

	The GuzzleHttp\Cookie\FileCookieJar class persists non-session cookies
using a JSON formatted file.

	The GuzzleHttp\Cookie\SessionCookieJar class persists cookies in the
client session.

You can manually set cookies into a cookie jar with the named constructor
fromArray(array $cookies, $domain).

$jar = \GuzzleHttp\Cookie\CookieJar::fromArray(
 [
 'some_cookie' => 'foo',
 'other_cookie' => 'barbaz1234'
],
 'example.org'
);

You can get a cookie by its name with the getCookieByName($name) method
which returns a GuzzleHttp\Cookie\SetCookie instance.

$cookie = $jar->getCookieByName('some_cookie');

$cookie->getValue(); // 'foo'
$cookie->getDomain(); // 'example.org'
$cookie->getExpires(); // expiration date as a Unix timestamp

The cookies can be also fetched into an array thanks to the toArray() method.
The GuzzleHttp\Cookie\CookieJarInterface interface extends
Traversable so it can be iterated in a foreach loop.

Redirects

Guzzle will automatically follow redirects unless you tell it not to. You can
customize the redirect behavior using the allow_redirects request option.

	Set to true to enable normal redirects with a maximum number of 5
redirects. This is the default setting.

	Set to false to disable redirects.

	Pass an associative array containing the 'max' key to specify the maximum
number of redirects and optionally provide a 'strict' key value to specify
whether or not to use strict RFC compliant redirects (meaning redirect POST
requests with POST requests vs. doing what most browsers do which is
redirect POST requests with GET requests).

$response = $client->request('GET', 'http://github.com');
echo $response->getStatusCode();
// 200

The following example shows that redirects can be disabled.

$response = $client->request('GET', 'http://github.com', [
 'allow_redirects' => false
]);
echo $response->getStatusCode();
// 301

Exceptions

Tree View

The following tree view describes how the Guzzle Exceptions depend
on each other.

. \RuntimeException
└── TransferException (implements GuzzleException)
 └── RequestException
 ├── BadResponseException
 │ ├── ServerException
 │ └── ClientException
 ├── ConnectException
 └── TooManyRedirectsException

Guzzle throws exceptions for errors that occur during a transfer.

	In the event of a networking error (connection timeout, DNS errors, etc.),
a GuzzleHttp\Exception\RequestException is thrown. This exception
extends from GuzzleHttp\Exception\TransferException. Catching this
exception will catch any exception that can be thrown while transferring
requests.

use GuzzleHttp\Psr7;
use GuzzleHttp\Exception\RequestException;

try {
 $client->request('GET', 'https://github.com/_abc_123_404');
} catch (RequestException $e) {
 echo Psr7\str($e->getRequest());
 if ($e->hasResponse()) {
 echo Psr7\str($e->getResponse());
 }
}

	A GuzzleHttp\Exception\ConnectException exception is thrown in the
event of a networking error. This exception extends from
GuzzleHttp\Exception\RequestException.

	A GuzzleHttp\Exception\ClientException is thrown for 400
level errors if the http_errors request option is set to true. This
exception extends from GuzzleHttp\Exception\BadResponseException and
GuzzleHttp\Exception\BadResponseException extends from
GuzzleHttp\Exception\RequestException.

use GuzzleHttp\Psr7;
use GuzzleHttp\Exception\ClientException;

try {
 $client->request('GET', 'https://github.com/_abc_123_404');
} catch (ClientException $e) {
 echo Psr7\str($e->getRequest());
 echo Psr7\str($e->getResponse());
}

	A GuzzleHttp\Exception\ServerException is thrown for 500 level
errors if the http_errors request option is set to true. This
exception extends from GuzzleHttp\Exception\BadResponseException.

	A GuzzleHttp\Exception\TooManyRedirectsException is thrown when too
many redirects are followed. This exception extends from GuzzleHttp\Exception\RequestException.

All of the above exceptions extend from
GuzzleHttp\Exception\TransferException.

Environment Variables

Guzzle exposes a few environment variables that can be used to customize the
behavior of the library.

	GUZZLE_CURL_SELECT_TIMEOUT

	Controls the duration in seconds that a curl_multi_* handler will use when
selecting on curl handles using curl_multi_select(). Some systems
have issues with PHP's implementation of curl_multi_select() where
calling this function always results in waiting for the maximum duration of
the timeout.

	HTTP_PROXY

	Defines the proxy to use when sending requests using the "http" protocol.

Note: because the HTTP_PROXY variable may contain arbitrary user input on some (CGI) environments, the variable is only used on the CLI SAPI. See https://httpoxy.org for more information.

	HTTPS_PROXY

	Defines the proxy to use when sending requests using the "https" protocol.

	NO_PROXY

	Defines URLs for which a proxy should not be used. See proxy for usage.

Relevant ini Settings

Guzzle can utilize PHP ini settings when configuring clients.

	openssl.cafile

	Specifies the path on disk to a CA file in PEM format to use when sending
requests over "https". See: https://wiki.php.net/rfc/tls-peer-verification#phpini_defaults

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle 6

Request Options

You can customize requests created and transferred by a client using
request options. Request options control various aspects of a request
including, headers, query string parameters, timeout settings, the body of a
request, and much more.

All of the following examples use the following client:

$client = new GuzzleHttp\Client(['base_uri' => 'http://httpbin.org']);

allow_redirects

	Summary
	Describes the redirect behavior of a request

	Types
	
	bool

	array

	Default
	[
 'max' => 5,
 'strict' => false,
 'referer' => false,
 'protocols' => ['http', 'https'],
 'track_redirects' => false
]

	Constant
	GuzzleHttp\RequestOptions::ALLOW_REDIRECTS

Set to false to disable redirects.

$res = $client->request('GET', '/redirect/3', ['allow_redirects' => false]);
echo $res->getStatusCode();
// 302

Set to true (the default setting) to enable normal redirects with a maximum
number of 5 redirects.

$res = $client->request('GET', '/redirect/3');
echo $res->getStatusCode();
// 200

You can also pass an associative array containing the following key value
pairs:

	max: (int, default=5) maximum number of allowed redirects.

	strict: (bool, default=false) Set to true to use strict redirects.
Strict RFC compliant redirects mean that POST redirect requests are sent as
POST requests vs. doing what most browsers do which is redirect POST requests
with GET requests.

	referer: (bool, default=false) Set to true to enable adding the Referer
header when redirecting.

	protocols: (array, default=['http', 'https']) Specified which protocols are
allowed for redirect requests.

	on_redirect: (callable) PHP callable that is invoked when a redirect
is encountered. The callable is invoked with the original request and the
redirect response that was received. Any return value from the on_redirect
function is ignored.

	track_redirects: (bool) When set to true, each redirected URI and status
code encountered will be tracked in the X-Guzzle-Redirect-History and
X-Guzzle-Redirect-Status-History headers respectively. All URIs and
status codes will be stored in the order which the redirects were encountered.

Note: When tracking redirects the X-Guzzle-Redirect-History header will
exclude the initial request's URI and the X-Guzzle-Redirect-Status-History
header will exclude the final status code.

use Psr\Http\Message\RequestInterface;
use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\UriInterface;

$onRedirect = function(
 RequestInterface $request,
 ResponseInterface $response,
 UriInterface $uri
) {
 echo 'Redirecting! ' . $request->getUri() . ' to ' . $uri . "\n";
};

$res = $client->request('GET', '/redirect/3', [
 'allow_redirects' => [
 'max' => 10, // allow at most 10 redirects.
 'strict' => true, // use "strict" RFC compliant redirects.
 'referer' => true, // add a Referer header
 'protocols' => ['https'], // only allow https URLs
 'on_redirect' => $onRedirect,
 'track_redirects' => true
]
]);

echo $res->getStatusCode();
// 200

echo $res->getHeaderLine('X-Guzzle-Redirect-History');
// http://first-redirect, http://second-redirect, etc...

echo $res->getHeaderLine('X-Guzzle-Redirect-Status-History');
// 301, 302, etc...

Warning

This option only has an effect if your handler has the
GuzzleHttp\Middleware::redirect middleware. This middleware is added
by default when a client is created with no handler, and is added by
default when creating a handler with GuzzleHttp\HandlerStack::create.

auth

	Summary
	Pass an array of HTTP authentication parameters to use with the
request. The array must contain the username in index [0], the password in
index [1], and you can optionally provide a built-in authentication type in
index [2]. Pass null to disable authentication for a request.

	Types
	
	array

	string

	null

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::AUTH

The built-in authentication types are as follows:

	basic

	Use basic HTTP authentication [http://www.ietf.org/rfc/rfc2069.txt]
in the Authorization header (the default setting used if none is
specified).

$client->request('GET', '/get', ['auth' => ['username', 'password']]);

	digest

	Use digest authentication [http://www.ietf.org/rfc/rfc2069.txt]
(must be supported by the HTTP handler).

$client->request('GET', '/get', [
 'auth' => ['username', 'password', 'digest']
]);

Note

This is currently only supported when using the cURL handler, but
creating a replacement that can be used with any HTTP handler is
planned.

	ntlm

	Use Microsoft NTLM authentication [https://msdn.microsoft.com/en-us/library/windows/desktop/aa378749(v=vs.85).aspx]
(must be supported by the HTTP handler).

$client->request('GET', '/get', [
 'auth' => ['username', 'password', 'ntlm']
]);

Note

This is currently only supported when using the cURL handler.

body

	Summary
	The body option is used to control the body of an entity
enclosing request (e.g., PUT, POST, PATCH).

	Types
	
	string

	fopen() resource

	Psr\Http\Message\StreamInterface

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::BODY

This setting can be set to any of the following types:

	string

// You can send requests that use a string as the message body.
$client->request('PUT', '/put', ['body' => 'foo']);

	resource returned from fopen()

// You can send requests that use a stream resource as the body.
$resource = fopen('http://httpbin.org', 'r');
$client->request('PUT', '/put', ['body' => $resource]);

	Psr\Http\Message\StreamInterface

// You can send requests that use a Guzzle stream object as the body
$stream = GuzzleHttp\Psr7\stream_for('contents...');
$client->request('POST', '/post', ['body' => $stream]);

Note

This option cannot be used with form_params, multipart, or json

cert

	Summary
	Set to a string to specify the path to a file containing a PEM
formatted client side certificate. If a password is required, then set to
an array containing the path to the PEM file in the first array element
followed by the password required for the certificate in the second array
element.

	Types
	
	string

	array

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::CERT

$client->request('GET', '/', ['cert' => ['/path/server.pem', 'password']]);

cookies

	Summary
	Specifies whether or not cookies are used in a request or what cookie
jar to use or what cookies to send.

	Types
	GuzzleHttp\Cookie\CookieJarInterface

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::COOKIES

You must specify the cookies option as a
GuzzleHttp\Cookie\CookieJarInterface or false.

$jar = new \GuzzleHttp\Cookie\CookieJar();
$client->request('GET', '/get', ['cookies' => $jar]);

Warning

This option only has an effect if your handler has the
GuzzleHttp\Middleware::cookies middleware. This middleware is added
by default when a client is created with no handler, and is added by
default when creating a handler with GuzzleHttp\default_handler.

Tip

When creating a client, you can set the default cookie option to true
to use a shared cookie session associated with the client.

connect_timeout

	Summary
	Float describing the number of seconds to wait while trying to connect
to a server. Use 0 to wait indefinitely (the default behavior).

	Types
	float

	Default
	0

	Constant
	GuzzleHttp\RequestOptions::CONNECT_TIMEOUT

// Timeout if the client fails to connect to the server in 3.14 seconds.
$client->request('GET', '/delay/5', ['connect_timeout' => 3.14]);

Note

This setting must be supported by the HTTP handler used to send a request.
connect_timeout is currently only supported by the built-in cURL
handler.

debug

	Summary
	Set to true or set to a PHP stream returned by fopen() to
enable debug output with the handler used to send a request. For example,
when using cURL to transfer requests, cURL's verbose of CURLOPT_VERBOSE
will be emitted. When using the PHP stream wrapper, stream wrapper
notifications will be emitted. If set to true, the output is written to
PHP's STDOUT. If a PHP stream is provided, output is written to the stream.

	Types
	
	bool

	fopen() resource

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::DEBUG

$client->request('GET', '/get', ['debug' => true]);

Running the above example would output something like the following:

* About to connect() to httpbin.org port 80 (#0)
* Trying 107.21.213.98... * Connected to httpbin.org (107.21.213.98) port 80 (#0)
> GET /get HTTP/1.1
Host: httpbin.org
User-Agent: Guzzle/4.0 curl/7.21.4 PHP/5.5.7

< HTTP/1.1 200 OK
< Access-Control-Allow-Origin: *
< Content-Type: application/json
< Date: Sun, 16 Feb 2014 06:50:09 GMT
< Server: gunicorn/0.17.4
< Content-Length: 335
< Connection: keep-alive
<
* Connection #0 to host httpbin.org left intact

decode_content

	Summary
	Specify whether or not Content-Encoding responses (gzip,
deflate, etc.) are automatically decoded.

	Types
	
	string

	bool

	Default
	true

	Constant
	GuzzleHttp\RequestOptions::DECODE_CONTENT

This option can be used to control how content-encoded response bodies are
handled. By default, decode_content is set to true, meaning any gzipped
or deflated response will be decoded by Guzzle.

When set to false, the body of a response is never decoded, meaning the
bytes pass through the handler unchanged.

// Request gzipped data, but do not decode it while downloading
$client->request('GET', '/foo.js', [
 'headers' => ['Accept-Encoding' => 'gzip'],
 'decode_content' => false
]);

When set to a string, the bytes of a response are decoded and the string value
provided to the decode_content option is passed as the Accept-Encoding
header of the request.

// Pass "gzip" as the Accept-Encoding header.
$client->request('GET', '/foo.js', ['decode_content' => 'gzip']);

delay

	Summary
	The number of milliseconds to delay before sending the request.

	Types
	
	integer

	float

	Default
	null

	Constant
	GuzzleHttp\RequestOptions::DELAY

expect

	Summary
	Controls the behavior of the "Expect: 100-Continue" header.

	Types
	
	bool

	integer

	Default
	1048576

	Constant
	GuzzleHttp\RequestOptions::EXPECT

Set to true to enable the "Expect: 100-Continue" header for all requests
that sends a body. Set to false to disable the "Expect: 100-Continue"
header for all requests. Set to a number so that the size of the payload must
be greater than the number in order to send the Expect header. Setting to a
number will send the Expect header for all requests in which the size of the
payload cannot be determined or where the body is not rewindable.

By default, Guzzle will add the "Expect: 100-Continue" header when the size of
the body of a request is greater than 1 MB and a request is using HTTP/1.1.

Note

This option only takes effect when using HTTP/1.1. The HTTP/1.0 and
HTTP/2.0 protocols do not support the "Expect: 100-Continue" header.
Support for handling the "Expect: 100-Continue" workflow must be
implemented by Guzzle HTTP handlers used by a client.

force_ip_resolve

	Summary
	Set to "v4" if you want the HTTP handlers to use only ipv4 protocol or "v6" for ipv6 protocol.

	Types
	string

	Default
	null

	Constant
	GuzzleHttp\RequestOptions::FORCE_IP_RESOLVE

// Force ipv4 protocol
$client->request('GET', '/foo', ['force_ip_resolve' => 'v4']);

// Force ipv6 protocol
$client->request('GET', '/foo', ['force_ip_resolve' => 'v6']);

Note

This setting must be supported by the HTTP handler used to send a request.
force_ip_resolve is currently only supported by the built-in cURL
and stream handlers.

form_params

	Summary
	Used to send an application/x-www-form-urlencoded POST request.

	Types
	array

	Constant
	GuzzleHttp\RequestOptions::FORM_PARAMS

Associative array of form field names to values where each value is a string or
array of strings. Sets the Content-Type header to
application/x-www-form-urlencoded when no Content-Type header is already
present.

$client->request('POST', '/post', [
 'form_params' => [
 'foo' => 'bar',
 'baz' => ['hi', 'there!']
]
]);

Note

form_params cannot be used with the multipart option. You will need to use
one or the other. Use form_params for application/x-www-form-urlencoded
requests, and multipart for multipart/form-data requests.

This option cannot be used with body, multipart, or json

headers

	Summary
	Associative array of headers to add to the request. Each key is the
name of a header, and each value is a string or array of strings
representing the header field values.

	Types
	array

	Defaults
	None

	Constant
	GuzzleHttp\RequestOptions::HEADERS

// Set various headers on a request
$client->request('GET', '/get', [
 'headers' => [
 'User-Agent' => 'testing/1.0',
 'Accept' => 'application/json',
 'X-Foo' => ['Bar', 'Baz']
]
]);

Headers may be added as default options when creating a client. When headers
are used as default options, they are only applied if the request being created
does not already contain the specific header. This includes both requests passed
to the client in the send() and sendAsync() methods, and requests
created by the client (e.g., request() and requestAsync()).

$client = new GuzzleHttp\Client(['headers' => ['X-Foo' => 'Bar']]);

// Will send a request with the X-Foo header.
$client->request('GET', '/get');

// Sets the X-Foo header to "test", which prevents the default header
// from being applied.
$client->request('GET', '/get', ['headers' => ['X-Foo' => 'test']]);

// Will disable adding in default headers.
$client->request('GET', '/get', ['headers' => null]);

// Will not overwrite the X-Foo header because it is in the message.
use GuzzleHttp\Psr7\Request;
$request = new Request('GET', 'http://foo.com', ['X-Foo' => 'test']);
$client->send($request);

// Will overwrite the X-Foo header with the request option provided in the
// send method.
use GuzzleHttp\Psr7\Request;
$request = new Request('GET', 'http://foo.com', ['X-Foo' => 'test']);
$client->send($request, ['headers' => ['X-Foo' => 'overwrite']]);

http_errors

	Summary
	Set to false to disable throwing exceptions on an HTTP protocol
errors (i.e., 4xx and 5xx responses). Exceptions are thrown by default when
HTTP protocol errors are encountered.

	Types
	bool

	Default
	true

	Constant
	GuzzleHttp\RequestOptions::HTTP_ERRORS

$client->request('GET', '/status/500');
// Throws a GuzzleHttp\Exception\ServerException

$res = $client->request('GET', '/status/500', ['http_errors' => false]);
echo $res->getStatusCode();
// 500

Warning

This option only has an effect if your handler has the
GuzzleHttp\Middleware::httpErrors middleware. This middleware is added
by default when a client is created with no handler, and is added by
default when creating a handler with GuzzleHttp\default_handler.

idn_conversion

	Summary
	Internationalized Domain Name (IDN) support (enabled by default if
intl extension is available).

	Types
	
	bool

	int

	Default
	true if intl extension is available (and ICU library is 4.6+ for PHP 7.2+), false otherwise

	Constant
	GuzzleHttp\RequestOptions::IDN_CONVERSION

$client->request('GET', 'https://яндекс.рф');
// яндекс.рф is translated to xn--d1acpjx3f.xn--p1ai before passing it to the handler

$res = $client->request('GET', 'https://яндекс.рф', ['idn_conversion' => false]);
// The domain part (яндекс.рф) stays unmodified

Enables/disables IDN support, can also be used for precise control by combining
IDNA_* constants (except IDNA_ERROR_*), see $options parameter in
idn_to_ascii() [https://www.php.net/manual/en/function.idn-to-ascii.php]
documentation for more details.

json

	Summary
	The json option is used to easily upload JSON encoded data as the
body of a request. A Content-Type header of application/json will be
added if no Content-Type header is already present on the message.

	Types
	Any PHP type that can be operated on by PHP's json_encode() function.

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::JSON

$response = $client->request('PUT', '/put', ['json' => ['foo' => 'bar']]);

Here's an example of using the tap middleware to see what request is sent
over the wire.

use GuzzleHttp\Middleware;

// Create a middleware that echoes parts of the request.
$tapMiddleware = Middleware::tap(function ($request) {
 echo $request->getHeaderLine('Content-Type');
 // application/json
 echo $request->getBody();
 // {"foo":"bar"}
});

// The $handler variable is the handler passed in the
// options to the client constructor.
$response = $client->request('PUT', '/put', [
 'json' => ['foo' => 'bar'],
 'handler' => $tapMiddleware($handler)
]);

Note

This request option does not support customizing the Content-Type header
or any of the options from PHP's json_encode() [http://www.php.net/manual/en/function.json-encode.php]
function. If you need to customize these settings, then you must pass the
JSON encoded data into the request yourself using the body request
option and you must specify the correct Content-Type header using the
headers request option.

This option cannot be used with body, form_params, or multipart

multipart

	Summary
	Sets the body of the request to a multipart/form-data form.

	Types
	array

	Constant
	GuzzleHttp\RequestOptions::MULTIPART

The value of multipart is an array of associative arrays, each containing
the following key value pairs:

	name: (string, required) the form field name

	contents: (StreamInterface/resource/string, required) The data to use in
the form element.

	headers: (array) Optional associative array of custom headers to use with
the form element.

	filename: (string) Optional string to send as the filename in the part.

$client->request('POST', '/post', [
 'multipart' => [
 [
 'name' => 'foo',
 'contents' => 'data',
 'headers' => ['X-Baz' => 'bar']
],
 [
 'name' => 'baz',
 'contents' => fopen('/path/to/file', 'r')
],
 [
 'name' => 'qux',
 'contents' => fopen('/path/to/file', 'r'),
 'filename' => 'custom_filename.txt'
],
]
]);

Note

multipart cannot be used with the form_params option. You will need to
use one or the other. Use form_params for application/x-www-form-urlencoded
requests, and multipart for multipart/form-data requests.

This option cannot be used with body, form_params, or json

on_headers

	Summary
	A callable that is invoked when the HTTP headers of the response have
been received but the body has not yet begun to download.

	Types
	
	callable

	Constant
	GuzzleHttp\RequestOptions::ON_HEADERS

The callable accepts a Psr\Http\ResponseInterface object. If an exception
is thrown by the callable, then the promise associated with the response will
be rejected with a GuzzleHttp\Exception\RequestException that wraps the
exception that was thrown.

You may need to know what headers and status codes were received before data
can be written to the sink.

// Reject responses that are greater than 1024 bytes.
$client->request('GET', 'http://httpbin.org/stream/1024', [
 'on_headers' => function (ResponseInterface $response) {
 if ($response->getHeaderLine('Content-Length') > 1024) {
 throw new \Exception('The file is too big!');
 }
 }
]);

Note

When writing HTTP handlers, the on_headers function must be invoked
before writing data to the body of the response.

on_stats

	Summary
	on_stats allows you to get access to transfer statistics of a
request and access the lower level transfer details of the handler
associated with your client. on_stats is a callable that is invoked
when a handler has finished sending a request. The callback is invoked
with transfer statistics about the request, the response received, or the
error encountered. Included in the data is the total amount of time taken
to send the request.

	Types
	
	callable

	Constant
	GuzzleHttp\RequestOptions::ON_STATS

The callable accepts a GuzzleHttp\TransferStats object.

use GuzzleHttp\TransferStats;

$client = new GuzzleHttp\Client();

$client->request('GET', 'http://httpbin.org/stream/1024', [
 'on_stats' => function (TransferStats $stats) {
 echo $stats->getEffectiveUri() . "\n";
 echo $stats->getTransferTime() . "\n";
 var_dump($stats->getHandlerStats());

 // You must check if a response was received before using the
 // response object.
 if ($stats->hasResponse()) {
 echo $stats->getResponse()->getStatusCode();
 } else {
 // Error data is handler specific. You will need to know what
 // type of error data your handler uses before using this
 // value.
 var_dump($stats->getHandlerErrorData());
 }
 }
]);

progress

	Summary
	Defines a function to invoke when transfer progress is made.

	Types
	
	callable

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::PROGRESS

The function accepts the following positional arguments:

	the total number of bytes expected to be downloaded, zero if unknown

	the number of bytes downloaded so far

	the total number of bytes expected to be uploaded

	the number of bytes uploaded so far

// Send a GET request to /get?foo=bar
$result = $client->request(
 'GET',
 '/',
 [
 'progress' => function(
 $downloadTotal,
 $downloadedBytes,
 $uploadTotal,
 $uploadedBytes
) {
 //do something
 },
]
);

proxy

	Summary
	Pass a string to specify an HTTP proxy, or an array to specify
different proxies for different protocols.

	Types
	
	string

	array

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::PROXY

Pass a string to specify a proxy for all protocols.

$client->request('GET', '/', ['proxy' => 'tcp://localhost:8125']);

Pass an associative array to specify HTTP proxies for specific URI schemes
(i.e., "http", "https"). Provide a no key value pair to provide a list of
host names that should not be proxied to.

Note

Guzzle will automatically populate this value with your environment's
NO_PROXY environment variable. However, when providing a proxy
request option, it is up to you to provide the no value parsed from
the NO_PROXY environment variable
(e.g., explode(',', getenv('NO_PROXY'))).

$client->request('GET', '/', [
 'proxy' => [
 'http' => 'tcp://localhost:8125', // Use this proxy with "http"
 'https' => 'tcp://localhost:9124', // Use this proxy with "https",
 'no' => ['.mit.edu', 'foo.com'] // Don't use a proxy with these
]
]);

Note

You can provide proxy URLs that contain a scheme, username, and password.
For example, "http://username:password@192.168.16.1:10".

query

	Summary
	Associative array of query string values or query string to add to
the request.

	Types
	
	array

	string

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::QUERY

// Send a GET request to /get?foo=bar
$client->request('GET', '/get', ['query' => ['foo' => 'bar']]);

Query strings specified in the query option will overwrite all query string
values supplied in the URI of a request.

// Send a GET request to /get?foo=bar
$client->request('GET', '/get?abc=123', ['query' => ['foo' => 'bar']]);

read_timeout

	Summary
	Float describing the timeout to use when reading a streamed body

	Types
	float

	Default
	Defaults to the value of the default_socket_timeout PHP ini setting

	Constant
	GuzzleHttp\RequestOptions::READ_TIMEOUT

The timeout applies to individual read operations on a streamed body (when the stream option is enabled).

$response = $client->request('GET', '/stream', [
 'stream' => true,
 'read_timeout' => 10,
]);

$body = $response->getBody();

// Returns false on timeout
$data = $body->read(1024);

// Returns false on timeout
$line = fgets($body->detach());

sink

	Summary
	Specify where the body of a response will be saved.

	Types
	
	string (path to file on disk)

	fopen() resource

	Psr\Http\Message\StreamInterface

	Default
	PHP temp stream

	Constant
	GuzzleHttp\RequestOptions::SINK

Pass a string to specify the path to a file that will store the contents of the
response body:

$client->request('GET', '/stream/20', ['sink' => '/path/to/file']);

Pass a resource returned from fopen() to write the response to a PHP stream:

$resource = fopen('/path/to/file', 'w');
$client->request('GET', '/stream/20', ['sink' => $resource]);

Pass a Psr\Http\Message\StreamInterface object to stream the response
body to an open PSR-7 stream.

$resource = fopen('/path/to/file', 'w');
$stream = GuzzleHttp\Psr7\stream_for($resource);
$client->request('GET', '/stream/20', ['save_to' => $stream]);

Note

The save_to request option has been deprecated in favor of the
sink request option. Providing the save_to option is now an alias
of sink.

ssl_key

	Summary
	Specify the path to a file containing a private SSL key in PEM
format. If a password is required, then set to an array containing the path
to the SSL key in the first array element followed by the password required
for the certificate in the second element.

	Types
	
	string

	array

	Default
	None

	Constant
	GuzzleHttp\RequestOptions::SSL_KEY

Note

ssl_key is implemented by HTTP handlers. This is currently only
supported by the cURL handler, but might be supported by other third-part
handlers.

stream

	Summary
	Set to true to stream a response rather than download it all
up-front.

	Types
	bool

	Default
	false

	Constant
	GuzzleHttp\RequestOptions::STREAM

$response = $client->request('GET', '/stream/20', ['stream' => true]);
// Read bytes off of the stream until the end of the stream is reached
$body = $response->getBody();
while (!$body->eof()) {
 echo $body->read(1024);
}

Note

Streaming response support must be implemented by the HTTP handler used by
a client. This option might not be supported by every HTTP handler, but the
interface of the response object remains the same regardless of whether or
not it is supported by the handler.

synchronous

	Summary
	Set to true to inform HTTP handlers that you intend on waiting on the
response. This can be useful for optimizations.

	Types
	bool

	Default
	none

	Constant
	GuzzleHttp\RequestOptions::SYNCHRONOUS

verify

	Summary
	Describes the SSL certificate verification behavior of a request.

	Set to true to enable SSL certificate verification and use the default
CA bundle provided by operating system.

	Set to false to disable certificate verification (this is insecure!).

	Set to a string to provide the path to a CA bundle to enable verification
using a custom certificate.

	Types
	
	bool

	string

	Default
	true

	Constant
	GuzzleHttp\RequestOptions::VERIFY

// Use the system's CA bundle (this is the default setting)
$client->request('GET', '/', ['verify' => true]);

// Use a custom SSL certificate on disk.
$client->request('GET', '/', ['verify' => '/path/to/cert.pem']);

// Disable validation entirely (don't do this!).
$client->request('GET', '/', ['verify' => false]);

If you do not need a specific certificate bundle, then Mozilla provides a
commonly used CA bundle which can be downloaded
here [https://curl.haxx.se/ca/cacert.pem]
(provided by the maintainer of cURL). Once you have a CA bundle available on
disk, you can set the "openssl.cafile" PHP ini setting to point to the path to
the file, allowing you to omit the "verify" request option. Much more detail on
SSL certificates can be found on the
cURL website [http://curl.haxx.se/docs/sslcerts.html].

timeout

	Summary
	Float describing the total timeout of the request in seconds. Use 0
to wait indefinitely (the default behavior).

	Types
	float

	Default
	0

	Constant
	GuzzleHttp\RequestOptions::TIMEOUT

// Timeout if a server does not return a response in 3.14 seconds.
$client->request('GET', '/delay/5', ['timeout' => 3.14]);
// PHP Fatal error: Uncaught exception 'GuzzleHttp\Exception\RequestException'

version

	Summary
	Protocol version to use with the request.

	Types
	string, float

	Default
	1.1

	Constant
	GuzzleHttp\RequestOptions::VERSION

// Force HTTP/1.0
$request = $client->request('GET', '/get', ['version' => 1.0]);

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle 6

Guzzle and PSR-7

Guzzle utilizes PSR-7 as the HTTP message interface. This allows Guzzle to work
with any other library that utilizes PSR-7 message interfaces.

Guzzle is an HTTP client that sends HTTP requests to a server and receives HTTP
responses. Both requests and responses are referred to as messages.

Guzzle relies on the guzzlehttp/psr7 Composer package for its message
implementation of PSR-7.

You can create a request using the GuzzleHttp\Psr7\Request class:

use GuzzleHttp\Psr7\Request;

$request = new Request('GET', 'http://httpbin.org/get');

// You can provide other optional constructor arguments.
$headers = ['X-Foo' => 'Bar'];
$body = 'hello!';
$request = new Request('PUT', 'http://httpbin.org/put', $headers, $body);

You can create a response using the GuzzleHttp\Psr7\Response class:

use GuzzleHttp\Psr7\Response;

// The constructor requires no arguments.
$response = new Response();
echo $response->getStatusCode(); // 200
echo $response->getProtocolVersion(); // 1.1

// You can supply any number of optional arguments.
$status = 200;
$headers = ['X-Foo' => 'Bar'];
$body = 'hello!';
$protocol = '1.1';
$response = new Response($status, $headers, $body, $protocol);

Headers

Both request and response messages contain HTTP headers.

Accessing Headers

You can check if a request or response has a specific header using the
hasHeader() method.

use GuzzleHttp\Psr7;

$request = new Psr7\Request('GET', '/', ['X-Foo' => 'bar']);

if ($request->hasHeader('X-Foo')) {
 echo 'It is there';
}

You can retrieve all the header values as an array of strings using
getHeader().

$request->getHeader('X-Foo'); // ['bar']

// Retrieving a missing header returns an empty array.
$request->getHeader('X-Bar'); // []

You can iterate over the headers of a message using the getHeaders()
method.

foreach ($request->getHeaders() as $name => $values) {
 echo $name . ': ' . implode(', ', $values) . "\r\n";
}

Complex Headers

Some headers contain additional key value pair information. For example, Link
headers contain a link and several key value pairs:

<http://foo.com>; rel="thing"; type="image/jpeg"

Guzzle provides a convenience feature that can be used to parse these types of
headers:

use GuzzleHttp\Psr7;

$request = new Psr7\Request('GET', '/', [
 'Link' => '<http:/.../front.jpeg>; rel="front"; type="image/jpeg"'
]);

$parsed = Psr7\parse_header($request->getHeader('Link'));
var_export($parsed);

Will output:

array (
 0 =>
 array (
 0 => '<http:/.../front.jpeg>',
 'rel' => 'front',
 'type' => 'image/jpeg',
),
)

The result contains a hash of key value pairs. Header values that have no key
(i.e., the link) are indexed numerically while headers parts that form a key
value pair are added as a key value pair.

Body

Both request and response messages can contain a body.

You can retrieve the body of a message using the getBody() method:

$response = GuzzleHttp\get('http://httpbin.org/get');
echo $response->getBody();
// JSON string: { ... }

The body used in request and response objects is a
Psr\Http\Message\StreamInterface. This stream is used for both
uploading data and downloading data. Guzzle will, by default, store the body of
a message in a stream that uses PHP temp streams. When the size of the body
exceeds 2 MB, the stream will automatically switch to storing data on disk
rather than in memory (protecting your application from memory exhaustion).

The easiest way to create a body for a message is using the stream_for
function from the GuzzleHttp\Psr7 namespace --
GuzzleHttp\Psr7\stream_for. This function accepts strings, resources,
callables, iterators, other streamables, and returns an instance of
Psr\Http\Message\StreamInterface.

The body of a request or response can be cast to a string or you can read and
write bytes off of the stream as needed.

use GuzzleHttp\Stream\Stream;
$response = $client->request('GET', 'http://httpbin.org/get');

echo $response->getBody()->read(4);
echo $response->getBody()->read(4);
echo $response->getBody()->read(1024);
var_export($response->eof());

Requests

Requests are sent from a client to a server. Requests include the method to
be applied to a resource, the identifier of the resource, and the protocol
version to use.

Request Methods

When creating a request, you are expected to provide the HTTP method you wish
to perform. You can specify any method you'd like, including a custom method
that might not be part of RFC 7231 (like "MOVE").

// Create a request using a completely custom HTTP method
$request = new \GuzzleHttp\Psr7\Request('MOVE', 'http://httpbin.org/move');

echo $request->getMethod();
// MOVE

You can create and send a request using methods on a client that map to the
HTTP method you wish to use.

	GET
	$client->get('http://httpbin.org/get', [/** options **/])

	POST
	$client->post('http://httpbin.org/post', [/** options **/])

	HEAD
	$client->head('http://httpbin.org/get', [/** options **/])

	PUT
	$client->put('http://httpbin.org/put', [/** options **/])

	DELETE
	$client->delete('http://httpbin.org/delete', [/** options **/])

	OPTIONS
	$client->options('http://httpbin.org/get', [/** options **/])

	PATCH
	$client->patch('http://httpbin.org/put', [/** options **/])

For example:

$response = $client->patch('http://httpbin.org/patch', ['body' => 'content']);

Request URI

The request URI is represented by a Psr\Http\Message\UriInterface object.
Guzzle provides an implementation of this interface using the
GuzzleHttp\Psr7\Uri class.

When creating a request, you can provide the URI as a string or an instance of
Psr\Http\Message\UriInterface.

$response = $client->request('GET', 'http://httpbin.org/get?q=foo');

Scheme

The scheme [https://tools.ietf.org/html/rfc3986#section-3.1] of a request
specifies the protocol to use when sending the request. When using Guzzle, the
scheme can be set to "http" or "https".

$request = new Request('GET', 'http://httpbin.org');
echo $request->getUri()->getScheme(); // http
echo $request->getUri(); // http://httpbin.org

Host

The host is accessible using the URI owned by the request or by accessing the
Host header.

$request = new Request('GET', 'http://httpbin.org');
echo $request->getUri()->getHost(); // httpbin.org
echo $request->getHeader('Host'); // httpbin.org

Port

No port is necessary when using the "http" or "https" schemes.

$request = new Request('GET', 'http://httpbin.org:8080');
echo $request->getUri()->getPort(); // 8080
echo $request->getUri(); // http://httpbin.org:8080

Path

The path of a request is accessible via the URI object.

$request = new Request('GET', 'http://httpbin.org/get');
echo $request->getUri()->getPath(); // /get

The contents of the path will be automatically filtered to ensure that only
allowed characters are present in the path. Any characters that are not allowed
in the path will be percent-encoded according to
RFC 3986 section 3.3 [https://tools.ietf.org/html/rfc3986#section-3.3]

Query string

The query string of a request can be accessed using the getQuery() of the
URI object owned by the request.

$request = new Request('GET', 'http://httpbin.org/?foo=bar');
echo $request->getUri()->getQuery(); // foo=bar

The contents of the query string will be automatically filtered to ensure that
only allowed characters are present in the query string. Any characters that
are not allowed in the query string will be percent-encoded according to
RFC 3986 section 3.4 [https://tools.ietf.org/html/rfc3986#section-3.4]

Responses

Responses are the HTTP messages a client receives from a server after sending
an HTTP request message.

Start-Line

The start-line of a response contains the protocol and protocol version,
status code, and reason phrase.

$client = new \GuzzleHttp\Client();
$response = $client->request('GET', 'http://httpbin.org/get');

echo $response->getStatusCode(); // 200
echo $response->getReasonPhrase(); // OK
echo $response->getProtocolVersion(); // 1.1

Body

As described earlier, you can get the body of a response using the
getBody() method.

$body = $response->getBody();
echo $body;
// Cast to a string: { ... }
$body->seek(0);
// Rewind the body
$body->read(1024);
// Read bytes of the body

Streams

Guzzle uses PSR-7 stream objects to represent request and response message
bodies. These stream objects allow you to work with various types of data all
using a common interface.

HTTP messages consist of a start-line, headers, and a body. The body of an HTTP
message can be very small or extremely large. Attempting to represent the body
of a message as a string can easily consume more memory than intended because
the body must be stored completely in memory. Attempting to store the body of a
request or response in memory would preclude the use of that implementation from
being able to work with large message bodies. The StreamInterface is used in
order to hide the implementation details of where a stream of data is read from
or written to.

The PSR-7 Psr\Http\Message\StreamInterface exposes several methods
that enable streams to be read from, written to, and traversed effectively.

Streams expose their capabilities using three methods: isReadable(),
isWritable(), and isSeekable(). These methods can be used by stream
collaborators to determine if a stream is capable of their requirements.

Each stream instance has various capabilities: they can be read-only,
write-only, read-write, allow arbitrary random access (seeking forwards or
backwards to any location), or only allow sequential access (for example in the
case of a socket or pipe).

Guzzle uses the guzzlehttp/psr7 package to provide stream support. More
information on using streams, creating streams, converting streams to PHP
stream resource, and stream decorators can be found in the
Guzzle PSR-7 documentation [https://github.com/guzzle/psr7/blob/master/README.md].

Creating Streams

The best way to create a stream is using the GuzzleHttp\Psr7\stream_for
function. This function accepts strings, resources returned from fopen(),
an object that implements __toString(), iterators, callables, and instances
of Psr\Http\Message\StreamInterface.

use GuzzleHttp\Psr7;

$stream = Psr7\stream_for('string data');
echo $stream;
// string data
echo $stream->read(3);
// str
echo $stream->getContents();
// ing data
var_export($stream->eof());
// true
var_export($stream->tell());
// 11

You can create streams from iterators. The iterator can yield any number of
bytes per iteration. Any excess bytes returned by the iterator that were not
requested by a stream consumer will be buffered until a subsequent read.

use GuzzleHttp\Psr7;

$generator = function ($bytes) {
 for ($i = 0; $i < $bytes; $i++) {
 yield '.';
 }
};

$iter = $generator(1024);
$stream = Psr7\stream_for($iter);
echo $stream->read(3); // ...

Metadata

Streams expose stream metadata through the getMetadata() method. This
method provides the data you would retrieve when calling PHP's
stream_get_meta_data() function [https://www.php.net/manual/en/function.stream-get-meta-data.php],
and can optionally expose other custom data.

use GuzzleHttp\Psr7;

$resource = fopen('/path/to/file', 'r');
$stream = Psr7\stream_for($resource);
echo $stream->getMetadata('uri');
// /path/to/file
var_export($stream->isReadable());
// true
var_export($stream->isWritable());
// false
var_export($stream->isSeekable());
// true

Stream Decorators

Adding custom functionality to streams is very simple with stream decorators.
Guzzle provides several built-in decorators that provide additional stream
functionality.

	AppendStream [https://github.com/guzzle/psr7#appendstream]

	BufferStream [https://github.com/guzzle/psr7#bufferstream]

	CachingStream [https://github.com/guzzle/psr7#cachingstream]

	DroppingStream [https://github.com/guzzle/psr7#droppingstream]

	FnStream [https://github.com/guzzle/psr7#fnstream]

	InflateStream [https://github.com/guzzle/psr7#inflatestream]

	LazyOpenStream [https://github.com/guzzle/psr7#lazyopenstream]

	LimitStream [https://github.com/guzzle/psr7#limitstream]

	MultipartStream [https://github.com/guzzle/psr7#multipartstream]

	NoSeekStream [https://github.com/guzzle/psr7#noseekstream]

	PumpStream [https://github.com/guzzle/psr7#pumpstream]

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle 6

Handlers and Middleware

Guzzle clients use a handler and middleware system to send HTTP requests.

Handlers

A handler function accepts a Psr\Http\Message\RequestInterface and array of
request options and returns a GuzzleHttp\Promise\PromiseInterface that is
fulfilled with a Psr\Http\Message\ResponseInterface or rejected with an
exception.

You can provide a custom handler to a client using the handler option of
a client constructor. It is important to understand that several request
options used by Guzzle require that specific middlewares wrap the handler used
by the client. You can ensure that the handler you provide to a client uses the
default middlewares by wrapping the handler in the
GuzzleHttp\HandlerStack::create(callable $handler = null) static method.

use GuzzleHttp\Client;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Handler\CurlHandler;

$handler = new CurlHandler();
$stack = HandlerStack::create($handler); // Wrap w/ middleware
$client = new Client(['handler' => $stack]);

The create method adds default handlers to the HandlerStack. When the
HandlerStack is resolved, the handlers will execute in the following order:

	Sending request:

	http_errors - No op when sending a request. The response status code
is checked in the response processing when returning a response promise up
the stack.

	allow_redirects - No op when sending a request. Following redirects
occurs when a response promise is being returned up the stack.

	cookies - Adds cookies to requests.

	prepare_body - The body of an HTTP request will be prepared (e.g.,
add default headers like Content-Length, Content-Type, etc.).

	<send request with handler>

	Processing response:

	prepare_body - no op on response processing.

	cookies - extracts response cookies into the cookie jar.

	allow_redirects - Follows redirects.

	http_errors - throws exceptions when the response status code >=
400.

When provided no $handler argument, GuzzleHttp\HandlerStack::create()
will choose the most appropriate handler based on the extensions available on
your system.

Important

The handler provided to a client determines how request options are applied
and utilized for each request sent by a client. For example, if you do not
have a cookie middleware associated with a client, then setting the
cookies request option will have no effect on the request.

Middleware

Middleware augments the functionality of handlers by invoking them in the
process of generating responses. Middleware is implemented as a higher order
function that takes the following form.

use Psr\Http\Message\RequestInterface;

function my_middleware()
{
 return function (callable $handler) {
 return function (RequestInterface $request, array $options) use ($handler) {
 return $handler($request, $options);
 };
 };
}

Middleware functions return a function that accepts the next handler to invoke.
This returned function then returns another function that acts as a composed
handler-- it accepts a request and options, and returns a promise that is
fulfilled with a response. Your composed middleware can modify the request,
add custom request options, and modify the promise returned by the downstream
handler.

Here's an example of adding a header to each request.

use Psr\Http\Message\RequestInterface;

function add_header($header, $value)
{
 return function (callable $handler) use ($header, $value) {
 return function (
 RequestInterface $request,
 array $options
) use ($handler, $header, $value) {
 $request = $request->withHeader($header, $value);
 return $handler($request, $options);
 };
 };
}

Once a middleware has been created, you can add it to a client by either
wrapping the handler used by the client or by decorating a handler stack.

use GuzzleHttp\HandlerStack;
use GuzzleHttp\Handler\CurlHandler;
use GuzzleHttp\Client;

$stack = new HandlerStack();
$stack->setHandler(new CurlHandler());
$stack->push(add_header('X-Foo', 'bar'));
$client = new Client(['handler' => $stack]);

Now when you send a request, the client will use a handler composed with your
added middleware, adding a header to each request.

Here's an example of creating a middleware that modifies the response of the
downstream handler. This example adds a header to the response.

use Psr\Http\Message\RequestInterface;
use Psr\Http\Message\ResponseInterface;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Handler\CurlHandler;
use GuzzleHttp\Client;

function add_response_header($header, $value)
{
 return function (callable $handler) use ($header, $value) {
 return function (
 RequestInterface $request,
 array $options
) use ($handler, $header, $value) {
 $promise = $handler($request, $options);
 return $promise->then(
 function (ResponseInterface $response) use ($header, $value) {
 return $response->withHeader($header, $value);
 }
);
 };
 };
}

$stack = new HandlerStack();
$stack->setHandler(new CurlHandler());
$stack->push(add_response_header('X-Foo', 'bar'));
$client = new Client(['handler' => $stack]);

Creating a middleware that modifies a request is made much simpler using the
GuzzleHttp\Middleware::mapRequest() middleware. This middleware accepts
a function that takes the request argument and returns the request to send.

use Psr\Http\Message\RequestInterface;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Handler\CurlHandler;
use GuzzleHttp\Client;
use GuzzleHttp\Middleware;

$stack = new HandlerStack();
$stack->setHandler(new CurlHandler());

$stack->push(Middleware::mapRequest(function (RequestInterface $request) {
 return $request->withHeader('X-Foo', 'bar');
}));

$client = new Client(['handler' => $stack]);

Modifying a response is also much simpler using the
GuzzleHttp\Middleware::mapResponse() middleware.

use Psr\Http\Message\ResponseInterface;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Handler\CurlHandler;
use GuzzleHttp\Client;
use GuzzleHttp\Middleware;

$stack = new HandlerStack();
$stack->setHandler(new CurlHandler());

$stack->push(Middleware::mapResponse(function (ResponseInterface $response) {
 return $response->withHeader('X-Foo', 'bar');
}));

$client = new Client(['handler' => $stack]);

HandlerStack

A handler stack represents a stack of middleware to apply to a base handler
function. You can push middleware to the stack to add to the top of the stack,
and unshift middleware onto the stack to add to the bottom of the stack. When
the stack is resolved, the handler is pushed onto the stack. Each value is
then popped off of the stack, wrapping the previous value popped off of the
stack.

use GuzzleHttp\Client;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Middleware;
use GuzzleHttp\Utils;
use Psr\Http\Message\RequestInterface;

$stack = new HandlerStack();
$stack->setHandler(Utils::chooseHandler());

$stack->push(Middleware::mapRequest(function (RequestInterface $r) {
 echo 'A';
 return $r;
}));

$stack->push(Middleware::mapRequest(function (RequestInterface $r) {
 echo 'B';
 return $r;
}));

$stack->push(Middleware::mapRequest(function (RequestInterface $r) {
 echo 'C';
 return $r;
}));

$client->request('GET', 'http://httpbin.org/');
// echoes 'ABC';

$stack->unshift(Middleware::mapRequest(function (RequestInterface $r) {
 echo '0';
 return $r;
}));

$client = new Client(['handler' => $stack]);
$client->request('GET', 'http://httpbin.org/');
// echoes '0ABC';

You can give middleware a name, which allows you to add middleware before
other named middleware, after other named middleware, or remove middleware
by name.

use Psr\Http\Message\RequestInterface;
use GuzzleHttp\Middleware;

// Add a middleware with a name
$stack->push(Middleware::mapRequest(function (RequestInterface $r) {
 return $r->withHeader('X-Foo', 'Bar');
}, 'add_foo'));

// Add a middleware before a named middleware (unshift before).
$stack->before('add_foo', Middleware::mapRequest(function (RequestInterface $r) {
 return $r->withHeader('X-Baz', 'Qux');
}, 'add_baz'));

// Add a middleware after a named middleware (pushed after).
$stack->after('add_baz', Middleware::mapRequest(function (RequestInterface $r) {
 return $r->withHeader('X-Lorem', 'Ipsum');
}));

// Remove a middleware by name
$stack->remove('add_foo');

Creating a Handler

As stated earlier, a handler is a function accepts a
Psr\Http\Message\RequestInterface and array of request options and returns
a GuzzleHttp\Promise\PromiseInterface that is fulfilled with a
Psr\Http\Message\ResponseInterface or rejected with an exception.

A handler is responsible for applying the following Request Options.
These request options are a subset of request options called
"transfer options".

	cert

	connect_timeout

	debug

	delay

	decode_content

	expect

	proxy

	sink

	timeout

	ssl_key

	stream

	verify

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Guzzle 6

Testing Guzzle Clients

Guzzle provides several tools that will enable you to easily mock the HTTP
layer without needing to send requests over the internet.

	Mock handler

	History middleware

	Node.js web server for integration testing

Mock Handler

When testing HTTP clients, you often need to simulate specific scenarios like
returning a successful response, returning an error, or returning specific
responses in a certain order. Because unit tests need to be predictable, easy
to bootstrap, and fast, hitting an actual remote API is a test smell.

Guzzle provides a mock handler that can be used to fulfill HTTP requests with
a response or exception by shifting return values off of a queue.

use GuzzleHttp\Client;
use GuzzleHttp\Handler\MockHandler;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Psr7\Response;
use GuzzleHttp\Psr7\Request;
use GuzzleHttp\Exception\RequestException;

// Create a mock and queue two responses.
$mock = new MockHandler([
 new Response(200, ['X-Foo' => 'Bar'], 'Hello, World'),
 new Response(202, ['Content-Length' => 0]),
 new RequestException('Error Communicating with Server', new Request('GET', 'test'))
]);

$handlerStack = HandlerStack::create($mock);
$client = new Client(['handler' => $handlerStack]);

// The first request is intercepted with the first response.
$response = $client->request('GET', '/');
echo $response->getStatusCode();
//> 200
echo $response->getBody();
//> Hello, World
// The second request is intercepted with the second response.
echo $client->request('GET', '/')->getStatusCode();
//> 202

// Reset the queue and queue up a new response
$mock->reset();
$mock->append(new Response(201));

// As the mock was reset, the new response is the 201 CREATED,
// instead of the previously queued RequestException
echo $client->request('GET', '/')->getStatusCode();
//> 201

When no more responses are in the queue and a request is sent, an
OutOfBoundsException is thrown.

History Middleware

When using things like the Mock handler, you often need to know if the
requests you expected to send were sent exactly as you intended. While the mock
handler responds with mocked responses, the history middleware maintains a
history of the requests that were sent by a client.

use GuzzleHttp\Client;
use GuzzleHttp\HandlerStack;
use GuzzleHttp\Middleware;

$container = [];
$history = Middleware::history($container);

$handlerStack = HandlerStack::create();
// or $handlerStack = HandlerStack::create($mock); if using the Mock handler.

// Add the history middleware to the handler stack.
$handlerStack->push($history);

$client = new Client(['handler' => $handlerStack]);

$client->request('GET', 'http://httpbin.org/get');
$client->request('HEAD', 'http://httpbin.org/get');

// Count the number of transactions
echo count($container);
//> 2

// Iterate over the requests and responses
foreach ($container as $transaction) {
 echo $transaction['request']->getMethod();
 //> GET, HEAD
 if ($transaction['response']) {
 echo $transaction['response']->getStatusCode();
 //> 200, 200
 } elseif ($transaction['error']) {
 echo $transaction['error'];
 //> exception
 }
 var_dump($transaction['options']);
 //> dumps the request options of the sent request.
}

Test Web Server

Using mock responses is almost always enough when testing a web service client.
When implementing custom HTTP handlers, you'll
need to send actual HTTP requests in order to sufficiently test the handler.
However, a best practice is to contact a local web server rather than a server
over the internet.

	Tests are more reliable

	Tests do not require a network connection

	Tests have no external dependencies

Using the test server

Warning

The following functionality is provided to help developers of Guzzle
develop HTTP handlers. There is no promise of backwards compatibility
when it comes to the node.js test server or the GuzzleHttp\Tests\Server
class. If you are using the test server or Server class outside of
guzzlehttp/guzzle, then you will need to configure autoloading and
ensure the web server is started manually.

Hint

You almost never need to use this test web server. You should only ever
consider using it when developing HTTP handlers. The test web server
is not necessary for mocking requests. For that, please use the
Mock handler and history middleware.

Guzzle ships with a node.js test server that receives requests and returns
responses from a queue. The test server exposes a simple API that is used to
enqueue responses and inspect the requests that it has received.

Any operation on the Server object will ensure that
the server is running and wait until it is able to receive requests before
returning.

GuzzleHttp\Tests\Server provides a static interface to the test server. You
can queue an HTTP response or an array of responses by calling
Server::enqueue(). This method accepts an array of
Psr\Http\Message\ResponseInterface and Exception objects.

use GuzzleHttp\Client;
use GuzzleHttp\Psr7\Response;
use GuzzleHttp\Tests\Server;

// Start the server and queue a response
Server::enqueue([
 new Response(200, ['Content-Length' => 0])
]);

$client = new Client(['base_uri' => Server::$url]);
echo $client->request('GET', '/foo')->getStatusCode();
// 200

When a response is queued on the test server, the test server will remove any
previously queued responses. As the server receives requests, queued responses
are dequeued and returned to the request. When the queue is empty, the server
will return a 500 response.

You can inspect the requests that the server has retrieved by calling
Server::received().

foreach (Server::received() as $response) {
 echo $response->getStatusCode();
}

You can clear the list of received requests from the web server using the
Server::flush() method.

Server::flush();
echo count(Server::received());
// 0

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 previous |

 	Guzzle 6

FAQ

Does Guzzle require cURL?

No. Guzzle can use any HTTP handler to send requests. This means that Guzzle
can be used with cURL, PHP's stream wrapper, sockets, and non-blocking libraries
like React [https://reactphp.org/]. You just need to configure an HTTP handler
to use a different method of sending requests.

Note

Guzzle has historically only utilized cURL to send HTTP requests. cURL is
an amazing HTTP client (arguably the best), and Guzzle will continue to use
it by default when it is available. It is rare, but some developers don't
have cURL installed on their systems or run into version specific issues.
By allowing swappable HTTP handlers, Guzzle is now much more customizable
and able to adapt to fit the needs of more developers.

Can Guzzle send asynchronous requests?

Yes. You can use the requestAsync, sendAsync, getAsync,
headAsync, putAsync, postAsync, deleteAsync, and patchAsync
methods of a client to send an asynchronous request. The client will return a
GuzzleHttp\Promise\PromiseInterface object. You can chain then
functions off of the promise.

$promise = $client->requestAsync('GET', 'http://httpbin.org/get');
$promise->then(function ($response) {
 echo 'Got a response! ' . $response->getStatusCode();
});

You can force an asynchronous response to complete using the wait() method
of the returned promise.

$promise = $client->requestAsync('GET', 'http://httpbin.org/get');
$response = $promise->wait();

How can I add custom cURL options?

cURL offers a huge number of customizable options [https://www.php.net/curl_setopt].
While Guzzle normalizes many of these options across different handlers, there
are times when you need to set custom cURL options. This can be accomplished
by passing an associative array of cURL settings in the curl key of a
request.

For example, let's say you need to customize the outgoing network interface
used with a client.

$client->request('GET', '/', [
 'curl' => [
 CURLOPT_INTERFACE => 'xxx.xxx.xxx.xxx'
]
]);

If you use asynchronous requests with cURL multi handler and want to tweak it,
additional options can be specified as an associative array in the
options key of the CurlMultiHandler constructor.

use \GuzzleHttp\Client;
use \GuzzleHttp\HandlerStack;
use \GuzzleHttp\Handler\CurlMultiHandler;

$client = new Client(['handler' => HandlerStack::create(new CurlMultiHandler([
 'options' => [
 CURLMOPT_MAX_TOTAL_CONNECTIONS => 50,
 CURLMOPT_MAX_HOST_CONNECTIONS => 5,
]
]))]);

How can I add custom stream context options?

You can pass custom stream context options [https://www.php.net/manual/en/context.php]
using the stream_context key of the request option. The stream_context
array is an associative array where each key is a PHP transport, and each value
is an associative array of transport options.

For example, let's say you need to customize the outgoing network interface
used with a client and allow self-signed certificates.

$client->request('GET', '/', [
 'stream' => true,
 'stream_context' => [
 'ssl' => [
 'allow_self_signed' => true
],
 'socket' => [
 'bindto' => 'xxx.xxx.xxx.xxx'
]
]
]);

Why am I getting an SSL verification error?

You need to specify the path on disk to the CA bundle used by Guzzle for
verifying the peer certificate. See verify.

What is this Maximum function nesting error?

Maximum function nesting level of '100' reached, aborting

You could run into this error if you have the XDebug extension installed and
you execute a lot of requests in callbacks. This error message comes
specifically from the XDebug extension. PHP itself does not have a function
nesting limit. Change this setting in your php.ini to increase the limit:

xdebug.max_nesting_level = 1000

Why am I getting a 417 error response?

This can occur for a number of reasons, but if you are sending PUT, POST, or
PATCH requests with an Expect: 100-Continue header, a server that does not
support this header will return a 417 response. You can work around this by
setting the expect request option to false:

$client = new GuzzleHttp\Client();

// Disable the expect header on a single request
$response = $client->request('PUT', '/', ['expect' => false]);

// Disable the expect header on all client requests
$client = new GuzzleHttp\Client(['expect' => false]);

How can I track redirected requests?

You can enable tracking of redirected URIs and status codes via the
track_redirects option. Each redirected URI and status code will be stored in the
X-Guzzle-Redirect-History and the X-Guzzle-Redirect-Status-History
header respectively.

The initial request's URI and the final status code will be excluded from the results.
With this in mind you should be able to easily track a request's full redirect path.

For example, let's say you need to track redirects and provide both results
together in a single report:

// First you configure Guzzle with redirect tracking and make a request
$client = new Client([
 RequestOptions::ALLOW_REDIRECTS => [
 'max' => 10, // allow at most 10 redirects.
 'strict' => true, // use "strict" RFC compliant redirects.
 'referer' => true, // add a Referer header
 'track_redirects' => true,
],
]);
$initialRequest = '/redirect/3'; // Store the request URI for later use
$response = $client->request('GET', $initialRequest); // Make your request

// Retrieve both Redirect History headers
$redirectUriHistory = $response->getHeader('X-Guzzle-Redirect-History')[0]; // retrieve Redirect URI history
$redirectCodeHistory = $response->getHeader('X-Guzzle-Redirect-Status-History')[0]; // retrieve Redirect HTTP Status history

// Add the initial URI requested to the (beginning of) URI history
array_unshift($redirectUriHistory, $initialRequest);

// Add the final HTTP status code to the end of HTTP response history
array_push($redirectCodeHistory, $response->getStatusCode());

// (Optional) Combine the items of each array into a single result set
$fullRedirectReport = [];
foreach ($redirectUriHistory as $key => $value) {
 $fullRedirectReport[$key] = ['location' => $value, 'code' => $redirectCodeHistory[$key]];
}
echo json_encode($fullRedirectReport);

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	Guzzle 6

Index

 Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

 _static/down-pressed.png

_static/comment.png

_static/up-pressed.png

_static/comment-close.png

_static/file.png

_static/plus.png

_static/logo.png
R
3, @
B

:

i
L8
Y
2
2w
e &

‘»:.P"
Rl
o

S

i

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Guzzle 6 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Michael Dowling.
 Created using Sphinx 1.3.6.

_static/minus.png

_static/guzzle-icon.png

_static/up.png

_static/down.png

_static/comment-bright.png

